School | Effect | Std |
---|---|---|
A | 28.39 | 14.9 |
B | 7.94 | 10.2 |
C | -2.75 | 16.3 |
D | 6.82 | 11.0 |
E | -0.64 | 9.4 |
F | 0.63 | 11.4 |
G | 18.01 | 10.4 |
H | 12.16 | 17.6 |
\[ \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\R}{\mathbb{R}} \newcommand{\E}{\mathbb{E}} \renewcommand{\P}{\mathbb{P}} \newcommand{\var}{{\rm Var}} % Variance \newcommand{\mse}{{\rm MSE}} % MSE \newcommand{\bias}{{\rm Bias}} % MSE \newcommand{\cov}{{\rm Cov}} % Covariance \newcommand{\iid}{\stackrel{\rm iid}{\sim}} \newcommand{\ind}{\stackrel{\rm ind}{\sim}} \renewcommand{\choose}[2]{\binom{#1}{#2}} % Choose \newcommand{\chooses}[2]{{}_{#1}C_{#2}} % Small choose \newcommand{\cd}{\stackrel{d}{\rightarrow}} \newcommand{\cas}{\stackrel{a.s.}{\rightarrow}} \newcommand{\cp}{\stackrel{p}{\rightarrow}} \newcommand{\bin}{{\rm Bin}} \newcommand{\ber}{{\rm Ber}} \DeclareMathOperator*{\argmax}{argmax} \DeclareMathOperator*{\argmin}{argmin} \]
\[\pi(\theta|x) = \frac{p(x|\theta)\pi(\theta)}{\int p(x|\theta^{\prime})\pi(\theta^{\prime})d\theta^{\prime}}.\]
\[\begin{align*} \theta & \longleftrightarrow \text{parameter}\\ x & \longleftrightarrow \text{data}\\ \pi(\theta) & \longleftrightarrow \textcolor{magenta}{\text{prior distribution}}\\ p(x|\theta) & \longleftrightarrow \text{likelihood/model}\\ \pi(\theta|x) & \longleftrightarrow \textcolor{magenta}{\text{posterior distribution}}\\ \end{align*}\]
A general procedure for Bayesian statistical analysis:
Week | Date | Topics | Reading |
---|---|---|---|
1 | 9/5 | Introduction & History of Bayes Theorem | |
2 | 9/12 | One-parameter Models; Conjugate Priors | Hoff Ch. 1-3, BC Ch. 1 |
3 | 9/19 | Prior Information and Prior Distribution | BC Ch. 3 |
4 | 9/26 | Decision Theory and Bayesian Estimation | BC Ch. 2, 4 |
5 | 10/3 | Connections to non-Bayesian Analysis; Hierarchical Models | BDA Ch. 4, 5 |
6 | 10/10 | No class (National Holiday) | |
7 | 10/17 | Testing and Model Comparison | BC Ch. 5, 7, BDA Ch. 6, 7 |
8 | 10/24 | Project Proposal | |
9 | 10/31 | Metropolis-Hastings algorithms; Gibbs sampler | BDA Ch. 10-11 |
10 | 11/7 | Hamiltonian Monte Carlo; Variational Inference | BDA Ch. 12-13 |
11 | 11/14 | Bayesian regression | BDA Ch. 14 |
12 | 11/21 | Generalized Linear Models; Latent Variable Model | BDA Ch. 16, 18 |
13 | 11/28 | Empirical Bayes | BC Ch. 10 |
14 | 12/5 | Bayesian Nonparametrics | BDA Ch. 21, 23 |
15 | 12/12 | Final Project Presentation | |
16 | 12/19 | Final Project Presentation |
Contact information
A study was performed for the ETS to analyze the effects of special coaching programs on SAT scores. Eight schools with their own coaching programs were involved in this study.
School | Effect | Std |
---|---|---|
A | 28.39 | 14.9 |
B | 7.94 | 10.2 |
C | -2.75 | 16.3 |
D | 6.82 | 11.0 |
E | -0.64 | 9.4 |
F | 0.63 | 11.4 |
G | 18.01 | 10.4 |
H | 12.16 | 17.6 |
What can we ask about this dataset?
Some important statisticians:
\[\P(A \mid B) \coloneqq \frac{\P(A \cap B)}{\P(B)}, \quad \text{if}\;\;\P(B) > 0.\]
\[\P(A \mid B) = \frac{\P(A \cap B)}{\P(B)} = \frac{\P(B \mid A)\P(A)}{\P(B)}.\]
\[\P(A) = \sum_{i=1}^k \P(A \mid B_i)\P(B_i).\]
\[\E(X) = \E_Y(\E_{X|Y}(X|Y)).\]
\[\var(X) = \var(\E(X|Y)) + \E(\var(X|Y)).\]
\[f(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad x \in \R\]
\[f(x;\alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}\exp(-\beta x), \quad x > 0\]
\[f(x;\alpha, \beta) = \frac{1}{B(\alpha, \beta)}x^{\alpha-1}(1-x)^{\beta-1}, \quad 0 \leq x \leq 1\]
\[f(x; n, p) = \choose{n}{x}p^x(1-p)^{n-x}, \quad x = 0, 1,\ldots, n\]
\[f(x;\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, 2, \ldots\]
\[f(x;r,p) = \choose{x+r-1}{x}p^r(1-p)^x, \quad x = 0, 1, \ldots\]
Suppose \(X_1, \ldots, X_n\) are iid (independent and identically distributed) from some distribution \(F\) with \(\E(X) = \mu\) and \(\var(X) = \sigma^2 < \infty\). Let \(\bar{X}_n = \frac{1}{n}\sum_{i=1}^n X_i\). Then